Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Clim Chang ; 13(10): 1095-1104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810622

RESUMO

Arctic wetlands are known methane (CH4) emitters but recent studies suggest that the Arctic CH4 sink strength may be underestimated. Here we explore the capacity of well-drained Arctic soils to consume atmospheric CH4 using >40,000 hourly flux observations and spatially distributed flux measurements from 4 sites and 14 surface types. While consumption of atmospheric CH4 occurred at all sites at rates of 0.092 ± 0.011 mgCH4 m-2 h-1 (mean ± s.e.), CH4 uptake displayed distinct diel and seasonal patterns reflecting ecosystem respiration. Combining in situ flux data with laboratory investigations and a machine learning approach, we find biotic drivers to be highly important. Soil moisture outweighed temperature as an abiotic control and higher CH4 uptake was linked to increased availability of labile carbon. Our findings imply that soil drying and enhanced nutrient supply will promote CH4 uptake by Arctic soils, providing a negative feedback to global climate change.

2.
Glob Chang Biol ; 29(16): 4638-4651, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37114938

RESUMO

Climate warming leads to widespread permafrost thaw with a fraction of the thawed permafrost carbon (C) being released as carbon dioxide (CO2 ), thus triggering a positive permafrost C-climate feedback. However, large uncertainty exists in the size of this model-projected feedback, partly owing to the limited understanding of permafrost CO2 release through the priming effect (i.e., the stimulation of soil organic matter decomposition by external C inputs) upon thaw. By combining permafrost sampling from 24 sites on the Tibetan Plateau and laboratory incubation, we detected an overall positive priming effect (an increase in soil C decomposition by up to 31%) upon permafrost thaw, which increased with permafrost C density (C storage per area). We then assessed the magnitude of thawed permafrost C under future climate scenarios by coupling increases in active layer thickness over half a century with spatial and vertical distributions of soil C density. The thawed C stocks in the top 3 m of soils from the present (2000-2015) to the future period (2061-2080) were estimated at 1.0 (95% confidence interval (CI): 0.8-1.2) and 1.3 (95% CI: 1.0-1.7) Pg (1 Pg = 1015 g) C under moderate and high Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5, respectively. We further predicted permafrost priming effect potential (priming intensity under optimal conditions) based on the thawed C and the empirical relationship between the priming effect and permafrost C density. By the period 2061-2080, the regional priming potentials could be 8.8 (95% CI: 7.4-10.2) and 10.0 (95% CI: 8.3-11.6) Tg (1 Tg = 1012 g) C year-1 under the RCP 4.5 and RCP 8.5 scenarios, respectively. This large CO2 emission potential induced by the priming effect highlights the complex permafrost C dynamics upon thaw, potentially reinforcing permafrost C-climate feedback.


Assuntos
Pergelissolo , Dióxido de Carbono/análise , Solo , Clima
3.
Glob Chang Biol ; 29(14): 3910-3923, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37097019

RESUMO

The status of plant and microbial nutrient limitation have profound impacts on ecosystem carbon cycle in permafrost areas, which store large amounts of carbon and experience pronounced climatic warming. Despite the long-term standing paradigm assumes that cold ecosystems primarily have nitrogen deficiency, large-scale empirical tests of microbial nutrient limitation are lacking. Here we assessed the potential microbial nutrient limitation across the Tibetan alpine permafrost region, using the combination of enzymatic and elemental stoichiometry, genes abundance and fertilization method. In contrast with the traditional view, the four independent approaches congruently detected widespread microbial nitrogen and phosphorus co-limitation in both the surface soil and deep permafrost deposits, with stronger limitation in the topsoil. Further analysis revealed that soil resources stoichiometry and microbial community composition were the two best predictors of the magnitude of microbial nutrient limitation. High ratio of available soil carbon to nutrient and low fungal/bacterial ratio corresponded to strong microbial nutrient limitation. These findings suggest that warming-induced enhancement in soil nutrient availability could stimulate microbial activity, and probably amplify soil carbon losses from permafrost areas.


Assuntos
Pergelissolo , Ecossistema , Nitrogênio , Fósforo , Solo , Carbono , Microbiologia do Solo
4.
Nat Commun ; 13(1): 6074, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241637

RESUMO

Nitrogen regulates multiple aspects of the permafrost climate feedback, including plant growth, organic matter decomposition, and the production of the potent greenhouse gas nitrous oxide. Despite its importance, current estimates of permafrost nitrogen are highly uncertain. Here, we compiled a dataset of >2000 samples to quantify nitrogen stocks in the Yedoma domain, a region with organic-rich permafrost that contains ~25% of all permafrost carbon. We estimate that the Yedoma domain contains 41.2 gigatons of nitrogen down to ~20 metre for the deepest unit, which increases the previous estimate for the entire permafrost zone by ~46%. Approximately 90% of this nitrogen (37 gigatons) is stored in permafrost and therefore currently immobile and frozen. Here, we show that of this amount, ¾ is stored >3 metre depth, but if partially mobilised by thaw, this large nitrogen pool could have continental-scale consequences for soil and aquatic biogeochemistry and global-scale consequences for the permafrost feedback.


Assuntos
Gases de Efeito Estufa , Pergelissolo , Carbono/análise , Nitrogênio/análise , Óxido Nitroso , Pergelissolo/química , Solo/química
5.
Glob Chang Biol ; 28(17): 5200-5210, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35748703

RESUMO

One of the major uncertainties for projecting permafrost carbon (C)-climate feedback is a poor representation of the non-growing season carbon dioxide (CO2 ) emissions under a changing climate. Here, combining in situ field observations, regional synthesis and a random forest model, we assessed contemporary and future soil respired CO2 (i.e., soil respiration, Rs ) across the Tibetan alpine permafrost region, which has received much less attention compared with the Arctic permafrost domain. We estimated the regional mean Rs of 229.8, 72.9 and 302.7 g C m-2  year-1 during growing season, non-growing season and the entire year, respectively; corresponding to the contemporary losses of 296.9, 94.3 and 391.2 Tg C year-1 from this high-altitude permafrost-affected area. The non-growing season Rs accounted for a quarter of the annual soil CO2 efflux. Different from the prevailing view that temperature is the most limiting factor for cold-period CO2 release in Arctic permafrost ecosystems, precipitation determined the spatial pattern of non-growing season Rs on the Tibetan Plateau. Using the key predictors, model extrapolation demonstrated additional losses of 38.8 and 74.5 Tg C from the non-growing season for a moderate mitigation scenario and a business-as-usual emissions scenario, respectively. These results provide a baseline for non-growing season CO2 emissions from high-altitude permafrost areas and help for accurate projection of permafrost C-climate feedback.


Assuntos
Pergelissolo , Dióxido de Carbono/análise , Ecossistema , Estações do Ano , Solo , Tibet
6.
Environ Microbiol ; 24(1): 179-194, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34750948

RESUMO

Understanding biogeographical patterns and underlying processes of belowground community assembly is crucial for predicting soil functions and their responses to global environmental change. However, little is known about potential differences of belowground community assembly among bacteria, fungi, protists and soil animals, particularly for alpine ecosystems. Based on the combination of large-scale field sampling, high-throughput marker-gene sequencing and multiple statistical analyses, we explored patterns and drivers of belowground community assembly in alpine grasslands on the Tibetan Plateau. Our results revealed that the distance-decay rates varied among trophic levels, with organisms of higher trophic level having weaker distance-decay pattern. The spatial and environmental variables explained limited variations of belowground communities. By contrast, the stochastic processes, mainly consisting of dispersal limitation and drift, played a primary role in regulating belowground community assembly. Moreover, the relative importance of stochastic processes varied among trophic levels, with the role of dispersal limitation weakening whereas that of drift enhancing in the order of bacteria, fungi, protists and soil animals. These findings advance our understanding of patterns and mechanisms driving belowground community assembly in alpine ecosystems and provide a reference basis for predicting the dynamics of ecosystem functions under changing environment.


Assuntos
Ecossistema , Pradaria , Animais , Solo , Microbiologia do Solo , Processos Estocásticos , Tibet
7.
Glob Chang Biol ; 28(3): 936-949, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34726326

RESUMO

Microbial necromass carbon (C) has been considered an important contributor to persistent soil C pool. However, there still lacks large-scale systematic observations on microbial necromass C in different soil layers, particularly for alpine ecosystems. Besides, it is still unclear whether the relative importance of biotic and abiotic variables such as plant C input and mineral properties in regulating microbial necromass C would change with soil depth. Based on the combination of large-scale sampling along a ~2200 km transect across Tibetan alpine grasslands and biomarker analysis, together with a global data synthesis across grassland ecosystems, we observed a relatively low proportion of microbial-derived C in Tibetan alpine grasslands compared to global grasslands (topsoil: 45.4% vs. 58.1%; subsoil: 41.7% vs. 53.7%). We also found that major determinants of microbial necromass C depended on soil depth. In topsoil, both plant C input and mineral protection exerted dominant effects on microbial necromass C. However, in subsoil, the physico-chemical protection provided by soil clay particles, iron-aluminum oxides, and exchangeable calcium dominantly facilitated the preservation of microbial necromass C. The differential drivers over microbial necromass C between soil depths should be considered in Earth system models for accurately forecasting soil C dynamics and its potential feedback to global warming.


Assuntos
Carbono , Solo , Carbono/análise , Ecossistema , Pradaria , Solo/química , Microbiologia do Solo , Tibet
8.
Glob Chang Biol ; 27(22): 5818-5830, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390614

RESUMO

Ecosystem carbon (C) dynamics after permafrost thaw depends on more than just climate change since soil nutrient status may also impact ecosystem C balance. It has been advocated that nitrogen (N) release upon permafrost thaw could promote plant growth and thus offset soil C loss. However, compared with the widely accepted C-N interactions, little is known about the potential role of soil phosphorus (P) availability. We combined 3-year field observations along a thaw sequence (constituted by four thaw stages, i.e., non-collapse and 5, 14, and 22 years since collapse) with an in-situ fertilization experiment (included N and P additions at the level of 10 g N m-2  year-1 and 10 g P m-2  year-1 ) to evaluate ecosystem C-nutrient interactions upon permafrost thaw. We found that changes in soil P availability rather than N availability played an important role in regulating gross primary productivity and net ecosystem productivity along the thaw sequence. The fertilization experiment confirmed that P addition had stronger effects on plant growth than N addition in this permafrost ecosystem. These two lines of evidence highlight the crucial role of soil P availability in altering the trajectory of permafrost C cycle under climate warming.


Assuntos
Pergelissolo , Carbono , Ecossistema , Nitrogênio , Fósforo
9.
Sci Adv ; 7(32)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34362729

RESUMO

Temperature sensitivity (Q 10) of permafrost carbon (C) release upon thaw is a vital parameter for projecting permafrost C dynamics under climate warming. However, it remains unclear how mineral protection interacts with microbial properties and intrinsic recalcitrance to affect permafrost C fate. Here, we sampled permafrost soils across a 1000-km transect on the Tibetan Plateau and conducted two laboratory incubations over 400- and 28-day durations to explore patterns and drivers of permafrost C release and its temperature response after thaw. We find that mineral protection and microbial properties are two types of crucial predictors of permafrost C dynamics upon thaw. Both high C release and Q 10 are associated with weak organo-mineral associations but high microbial abundances and activities, whereas high microbial diversity corresponds to low Q 10 The attenuating effects of mineral protection and the dual roles of microbial properties would make the permafrost C-climate feedback more complex than previously thought.

10.
Environ Sci Technol ; 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34310124

RESUMO

Permafrost thaw could increase methane (CH4) emissions, which largely depends on CH4 production driven by methanogenic archaea. However, large-scale evidence regarding key methanogenic taxa and their relative importance to abiotic factors in mediating methanogenesis remains limited. Here, we explored the methanogenic community, potential CH4 production and its determinants in the active layer and permafrost deposits based on soil samples acquired from 12 swamp meadow sites along a ∼1000 km permafrost transect on the Tibetan Plateau. Our results revealed lower CH4 production potential, mcrA gene abundance, and richness in the permafrost layer than those in the active layer. CH4 production potential in both soil layers was regulated by microbial and abiotic factors. Of the microbial properties, marker OTUs, rather than the abundance and diversity of methanogens, stimulated CH4 production potential. Marker OTUs differed between the two soil layers with hydrogenotrophic Methanocellales and facultative acetoclastic Methanosarcina predominant in regulating CH4 production potential in the permafrost and active layer, respectively. Besides microbial drivers, CH4 production potential increased with the carbon/nitrogen (C/N) ratio in both soil layers and was also stimulated by soil moisture in the permafrost layer. These results provide empirical evidence for model improvements to better predict permafrost carbon feedback to climate warming.

11.
J BUON ; 26(1): 93-100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33721438

RESUMO

PURPOSE: To explore the efficacy and safety of apatinib mesylate in the third-line treatment of advanced colorectal cancer after the standard second-line treatment failed, and to analyze the possible factors affecting the prognosis. METHODS: The clinical data of 52 patients with advanced colorectal cancer who failed or were intolerant of the standard second-line treatment performed in our hospital from January 2017 to December 2018 were collected. All the patients received the third-line treatment with apatinib mesylate tablets that were administered at 500 mg q.d. with 28 d as an administration cycle, and the clinical efficacy of apatinib mesylate and incidence of adverse reactions were recorded and analyzed. Besides, the survival and disease progression of the patients were followed up and recorded, and the influencing factors for the prognosis were analyzed. RESULTS: The remaining 50 patients had efficacy evaluation, and it was found that the overall response rate (ORR) and disease control rate (DCR) were 8.0% (4/50) and 50% (25/50), respectively. The median survival, median progression-free survival (mPFS) and 1-year overall survival (OS) rate were 7.6±2.5, 4.0±1.7 and 26.9% (14/52), respectively. After treatment, the patients had increased scores for all items on the functional scale of the Quality of Life Questionnaire Core 30 (QLQ-C30). Decreases in the scores for all items on the symptomatic scale were also found after treatment, and the mitigation of the symptoms nausea and vomiting and pain was statistically significantly different. According to multivariate analysis results, the mPFS was significantly prolonged in the patients with CerB2++/+++, the positivity rate of Ki-67 ≥50% and the presence of hypertension after treatment. CONCLUSIONS: Apatinib is effective in the third-line treatment of advanced colorectal cancer, significantly improves the patient quality of life, and causes tolerable adverse reactions. The mPFS is markedly extended in the patients with CerB2++/+++, positivity rate of Ki-67 ≥50% and the presence of hypertension after treatment, which are the independent factors affecting the efficacy.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Análise de Sobrevida
12.
Glob Chang Biol ; 27(14): 3218-3229, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33336478

RESUMO

Permafrost thaw could trigger the release of greenhouse gases through microbial decomposition of the large quantities of carbon (C) stored within frozen soils. However, accurate evaluation of soil C emissions from thawing permafrost is still a big challenge, partly due to our inadequate understanding about the response of microbial communities and their linkage with soil C release upon permafrost thaw. Based on a large-scale permafrost sampling across 24 sites on the Tibetan Plateau, we employed meta-genomic technologies (GeoChip and Illumina MiSeq sequencing) to explore the impacts of permafrost thaw (permafrost samples were incubated for 11 days at 5°C) on microbial taxonomic and functional communities, and then conducted a laboratory incubation to investigate the linkage of microbial taxonomic and functional diversity with soil C release after permafrost thaw. We found that bacterial and fungal α diversity decreased, but functional gene diversity and the normalized relative abundance of C degradation genes increased after permafrost thaw, reflecting the rapid microbial response to permafrost thaw. Moreover, both the microbial taxonomic and functional community structures differed between the thawed permafrost and formerly frozen soils. Furthermore, soil C release rate over five month incubation was associated with microbial functional diversity and C degradation gene abundances. By contrast, neither microbial taxonomic diversity nor community structure exhibited any significant effects on soil C release over the incubation period. These findings demonstrate that permafrost thaw could accelerate C emissions by altering the function potentials of microbial communities rather than taxonomic diversity, highlighting the crucial role of microbial functional genes in mediating the responses of permafrost C cycle to climate warming.


Assuntos
Pergelissolo , Carbono , Ciclo do Carbono , Solo , Microbiologia do Solo
13.
Glob Chang Biol ; 27(4): 823-835, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33155741

RESUMO

Permafrost thaw could induce substantial carbon (C) emissions to the atmosphere, and thus trigger a positive feedback to climate warming. As the engine of biogeochemical cycling, soil microorganisms exert a critical role in mediating the direction and strength of permafrost C-climate feedback. However, our understanding about the impacts of thermokarst (abrupt permafrost thaw) on microbial structure and function remains limited. Here we employed metagenomic sequencing to analyze changes in topsoil (0-15 cm) microbial communities and functional genes along a permafrost thaw sequence (1, 10, and 16 years since permafrost collapse) on the Tibetan Plateau. By combining laboratory incubation and a two-pool model, we then explored changes in soil labile and stable C decomposition along the thaw sequence. Our results showed that topsoil microbial α-diversity decreased, while the community structure and functional gene abundance did not exhibit any significant change at the early stage of collapse (1 year since collapse) relative to non-collapsed control. However, as the time since the collapse increased, both the topsoil microbial community structure and functional genes differed from the control. Abundances of functional genes involved in labile C degradation decreased while those for stable C degradation increased at the late stage of collapse (16 years since collapse), largely driven by changes in substrate properties along the thaw sequence. Accordingly, faster stable C decomposition occurred at the late stage of collapse compared to the control, which was associated with the increase in relative abundance of functional genes for stable C degradation. These results suggest that upland thermokarst alters microbial structure and function, particularly enhances soil stable C decomposition by modulating microbial functional genes, which could reinforce a warmer climate over the decadal timescale.


Assuntos
Microbiota , Pergelissolo , Carbono , Solo , Microbiologia do Solo
14.
Nat Commun ; 11(1): 3331, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620773

RESUMO

The ecosystem carbon (C) balance in permafrost regions, which has a global significance in understanding the terrestrial C-climate feedback, is significantly regulated by nitrogen (N) dynamics. However, our knowledge on temporal changes in vegetation N limitation (i.e., the supply of N relative to plant N demand) in permafrost ecosystems is still limited. Based on the combination of isotopic observations derived from a re-sampling campaign along a ~3000 km transect and simulations obtained from a process-based biogeochemical model, here we detect changes in ecosystem N cycle across the Tibetan alpine permafrost region over the past decade. We find that vegetation N limitation becomes stronger despite the increased available N production. The enhanced N limitation on vegetation growth is driven by the joint effects of elevated plant N demand and gaseous N loss. These findings suggest that N would constrain the future trajectory of ecosystem C cycle in this alpine permafrost region.

15.
Glob Chang Biol ; 26(9): 5290-5302, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32506764

RESUMO

It had been suggested that permafrost thaw could promote frozen nitrogen (N) release and modify microbial N transformation rates, which might alter soil N availability and then regulate ecosystem functions. However, the current understanding of this issue is confined to limited observations in the Arctic permafrost region, without any systematic measurements in other permafrost regions. Based on a large-scale field investigation along a 1,000 km transect and a laboratory incubation experiment with a 15 N pool dilution approach, this study provides the comprehensive evaluation of the permafrost N status, including the available N content and related N transformation rates, across the Tibetan alpine permafrost region. In contrast to the prevailing view, our results showed that the Tibetan alpine permafrost had lower available N content and net N mineralization rate than the active layer. Moreover, the permafrost had lower gross rates of N mineralization, microbial immobilization and nitrification than the active layer. Our results also revealed that the dominant drivers of the gross N mineralization and microbial immobilization rates differed between the permafrost and the active layer, with these rates being determined by microbial properties in the permafrost while regulated by soil moisture in the active layer. In contrast, soil gross nitrification rate was consistently modulated by the soil NH 4 + content in both the permafrost and the active layer. Overall, patterns and drivers of permafrost N pools and transformation rates observed in this study offer new insights into the potential N release upon permafrost thaw and provide important clues for Earth system models to better predict permafrost biogeochemical cycles under a warming climate.


Assuntos
Pergelissolo , Regiões Árticas , Ecossistema , Nitrogênio/análise , Solo , Tibet
16.
Minerva Med ; 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32538587

RESUMO

BACKGROUND: To uncover the clinical significance of LINC00858 in the development of Wilms' tumor and the potential molecular mechanism. METHODS: LINC00858 levels in Wilms' tumor species and cell lines were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The clinical significance of LINC00858 in influencing pathological features and prognosis in patients with Wilms' tumor was analyzed. Proliferative and migratory changes in Wilms' tumor cells with LINC00858 knockdown were assessed. The downstream gene of LINC00858 was verified by luciferase assay, and its involvement in the development of Wilms' tumor was further explored. RESULTS: LINC00858 was highly expressed in Wilms' tumor tissues and cell lines. High level of LINC00858 was correlated to high rate of lymphatic metastasis and poor prognosis in patients with Wilms' tumor. Knockdown of LINC00858 suppressed proliferative and migratory potentials in HFWT and 17-94 cells. MiR-653-5p was targeted by LINC00858. It was lowly expressed in Wilms' tumor tissues and negatively regulated by LINC00858. Knockdown of miR-653-5p partially abolished the regulatory effects of LINC00858 on proliferative and migratory potentials in Wilms' tumor cells. CONCLUSIONS: LINC00858 is highly expressed in Wilms' tumor species, and correlated to lymphatic metastasis rate and overall survival in patients with Wilms' tumor. Knockdown of LINC00858 suppresses Wilms' tumor cells to proliferate and migrate via targeting miR-653-3p.

17.
Environ Sci Technol ; 53(24): 14243-14252, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31718180

RESUMO

Methane (CH4) dynamics across permafrost regions is critical in determining the magnitude and direction of permafrost carbon (C)-climate feedback. However, current studies are mainly derived from the Arctic area, with limited evidence from other permafrost regions. By combining large-scale laboratory incubation across 51 sampling sites with machine learning techniques and bootstrap analysis, here, we determined regional patterns and dominant drivers of CH4 oxidation potential in alpine steppe and meadow (CH4 sink areas) and CH4 production potential in swamp meadow (CH4 source areas) across the Tibetan alpine permafrost region. Our results showed that both CH4 oxidation potential (in alpine steppe and meadow) and CH4 production potential (in swamp meadow) exhibited large variability across various sampling sites, with the median value being 8.7, 9.6, and 11.5 ng g-1 dry soil h-1, respectively. Our results also revealed that methanotroph abundance and soil moisture were two dominant factors regulating CH4 oxidation potential, whereas CH4 production potential was mainly affected by methanogen abundance and the soil organic carbon content, with functional gene abundance acting as the best explaining variable. These results highlight the crucial role of microbes in regulating CH4 dynamics, which should be considered when predicting the permafrost C cycle under future climate scenarios.


Assuntos
Pergelissolo , Regiões Árticas , Carbono , Metano , Solo , Tibet
18.
Sci Total Environ ; 650(Pt 2): 1795-1804, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30278424

RESUMO

Permafrost soils store a large amount of nitrogen (N) which could be activated under the continuous climate warming. However, compared with carbon (C) stock, little is known about the size and spatial distribution of permafrost N stock. By combining measurements from 519 pedons with two machine learning models (supporting vector machine (SVM) and random forest (RF)), we estimated the size and spatial distribution of N stock across the Tibetan alpine permafrost region. We then compared these spatially-explicit N estimates with simulated N stocks from the Community Land Model (CLM). We found that N density (N amount per area) in the top three meters was 1.58 kg N m-2 (interquartile range: 1.40-1.76) across the study area, constituting a total of 1802 Tg N (interquartile range: 1605-2008), decreasing from the southeast to the northwest of the plateau. N stored below 1 m accounted for 48% of the total N stock in the top three meters. CLM4.5 significantly underestimated the N stock on the Tibetan Plateau, primarily in areas with arid/semi-arid climate. The process of biological N fixation played a key role in the underestimation of N stock prediction. Overall, our study highlights that it is imperative to improve the simulation of N processes and permafrost N stocks in land models to better predict ecological consequences induced by rapid and widespread permafrost degradation.

19.
Environ Sci Technol ; 52(16): 9162-9169, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29984572

RESUMO

Permafrost thawing may release nitrous oxide (N2O) due to large N storage in cold environments. However, N2O emissions from permafrost regions have received little attention to date, particularly with respect to the underlying microbial mechanisms. We examined the magnitude of N2O fluxes following upland thermokarst formation along a 20-year thaw sequence within a thermo-erosion gully in a Tibetan swamp meadow. We also determined the importance of environmental factors and the related microbial functional gene abundance. Our results showed that permafrost thawing led to a mass release of N2O in recently collapsed sites (3 years ago), particularly in exposed soil patches, which presented post-thaw emission rates equivalent to those from agricultural and tropical soils. In addition to abiotic factors, soil microorganisms exerted significant effects on the variability in the N2O emissions along the thaw sequence and between vegetated and exposed patches. Overall, our results demonstrate that upland thermokarst formation can lead to enhanced N2O emissions, and that the global warming potential (GWP) of N2O at the thermokarst sites can reach 60% of the GWP of CH4 (vs ∼6% in control sites), highlighting the potentially strong noncarbon (C) feedback to climate warming in permafrost regions.


Assuntos
Pergelissolo , Agricultura , Aquecimento Global , Óxido Nitroso , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...